A Straightforward Synthesis of (\pm) 5-Amino-5,6-Dideoxyallose, of its Bisulfite β -Anomer, and of its 1-Deoxy Derivative.

Albert Defoin*, Hervé Sarazin and Jacques Streith

Ecole Nationale Supérieure de Chimie, Université de Haute-Alsace 3, rue Alfred Werner F-68093 MULHOUSE CEDEX, FRANCE.

Abstract. - Diels-Alder cycloaddition of (E,E)-hexadienal dimethylacetal 3 with the benzyloxycarbonylnitroso dienophile 4, followed by catalytic osmylation, hydrogenolysis, and treatment with SO2, led stereospecifically to the sole β -anomer of allopiperidinose bisulfite derivative 7. Saponification of 7 and thence catalytic hydrogenation gave in high yield the 1-deoxyallopiperidine derivative 9.

The naturally occurring nojirimycin, *i.e.* 5-amino-5-deoxy-D-glucopyranose, was isolated and identified way back in 1967.¹ At that time it was the sole representative of sugars containing a nitrogen atom in the ring. Nojirimycin is noteworthy for its physiological properties, in particular as a glycosidase inhibitor.¹ Similarly its bisulfite,² and foremost, its 1-deoxy derivative DNJ,³ also are glycosidase inhibitors.

This type of physiological property has also been observed with manno-nojirimycin,⁴ anti with galactostatine;⁵ as to allo-nojirimycin, its synthesis has been described recently.⁶

During the last 25 years a large number of 1-deoxyaminosugars have been isolated from natural sources ; they derive either from piperidines, from pyrrolidines, from pyrrolizines, or from octahydroindolizines.⁷ Since these molecules inhibit glycoprotein processing, they have potential antihuman immunodeficiency virus (HIV) activity,⁷ and led to a scramble towards the synthesis of similar target molecules.

Along these lines we describe herein a simple and straightforward stereospecific synthesis of the piperidinose (\pm) 5-amino-5,6-dideoxyallose 1, of its bisulfite 7 and of its 1-deoxy derivative 9. In passing it should be mentioned that a series of 6-deoxyaldohexoses occur as natural products, *e.g.* L-rhamnose and L-fucose.⁸

(E,E)-Hexadienal-dimethylacetal 3 had been shown to undergo Diels-Alder cycloaddition with a series of acylnitroso dienophiles. The primary adducts were transformed stereospecifically into N-acyl 6deoxyallo-nojirimycin derivatives 2.9 To cite but one example, N-benzyloxycarbonylnitroso dienophile 4 - which was obtained by *in situ* oxidation of the corresponding hydroxamic acid with tetra-n-propylammonium periodate - reacted with 3 to give a major D.A. cycloadduct in excellent yield. Catalytic osmylation (in the presence of N-methylmorpholine N-oxide, or NMO) of this latter one led to the *cis*-diol 5 whose hydrogenolysis (H2, Pd/C) gave the acyclic aminoallose dimethylacetal 6.9 When a solution of 6 in water was reacted with SO₂ for 3 d at 40°C (the bisulfite 7 (β -anomer) was formed in 90 % yield as colourless crystals (m.p. 146-147°C). Saponification of 7 in water using a small excess of Ba(OH)₂ at r.t. gave (±) 6-deoxyallonojirimycin 1 - *i.e.* (±)5-amino-5,6-dideoxyallose - as an equilibrium of the piperidinose anomers 1(α) (37 %), and 1(β) (53 %), as well as the imine 8 (10 %), as determined by ¹H-NMR in D₂O at 27°C. In acidic medium 1 undergoes easily the "Amadori rearrangement", *i.e.* a functional isomerisation which had already been observed with some other

piperidinoses.¹⁰ Catalytic hydrogenation (5 % Pd/C; r t; overnight) of the $1(\alpha)/1(\beta)/8$ mixture led quantitatively to the sole aminotriol 9, *i.e.* to (±) 1,6-dideoxyallonojirimycin which was characterized as its tetracetyl derivative 10 (m.p. 120-121°C).

Structural and conformational analyses of the newly synthesized products - $1(\alpha)$, $1(\beta)$, 7-9 - were performed by ¹H-NMR (see *Table*). One notices in particular that the piperidinose derivatives appear in their ⁴C₁ conformation which is imposed by the equatorial orientation of the CH₃-C(5) group. The β -anomers appear with a large ³J_{1,2} (trans-diaxial H-atoms), the α -anomers with the expected long-rang ⁴J_{1,3} coupling constants (see *Table*).

Table. - ¹H NMR spectral data of allopiperidinose derivative 7, 1 α , 1 β , and 8 in D₂O at 250 MHz at 300 K. δ in ppm, J in Hz, internal standard TBDS.

	H-1	H-2	H-3	H-4	H-5	Mic	J1,2	J1,3	J2,3	J3,4	J4,5	J5,Me
7	4.23	4.11	4.18	3.68	3.49	1.43	10.6	-	2.5	2.5	10.6	6.4
1α	4.58	3.63	4.04	3.21	3.17	1.12	3.5	1.3	3.1	2.4	10.0	6.0
1β	4.36	3.32	4.05	3.25	2.92	1.10	8.8		3.0	3.0	10.2	6.4
8 2)	7.52	4.02	4.20	3.51	3.47	1.30	2.0	0.9	3.7	~3	9.0	6.6

a) $J_{1,5} = 2.2 \text{ Hz}$

HO
$$HO$$
 $Y = H$
HO Y HO $Y = H$
 1β $X = OH$ $; Y = H$
 1α $X = H$ $; Y = OH$

Let us compare the α/β anomer ratio of allopyranose ($\alpha/\beta = 18:70$ at 40°C)¹¹ with the one observed with 6-deoxyallopiperidinose 1, *i.e.* $\alpha/\beta = 37:53$ (see above). The observed increase of the ratio is due to the replacement of the ring oxygen atom by a nitrogen. This means that the so-called anomer-effect is stronger with piperidinoses than with the corresponding pyranoses by *ca*. 0.6 kcal.mol⁻¹. This magnitude is similar to the one which had been determined for nojirimycin (a piperidinose) as compared to glucopyranose.¹²

Acknowledgement. - The support of the Centre National de la Recherche Scientifique (URA-135) is gratefully acknowledged. We also wish to thank the Fondation pour l'Ecole de Chimie de Mulhouse for a PhD-grant to one of us (H.S.).

References

- 1. Ishida, N.; Kumagai, K.; Niida, T.; Tsuruoka, T.; Yumoto, H. J. Antibiot. (Tokyo) 1967, A 20, 66; Inouye, Sh.; Tsuruoka, T.; Ito, T.; Niida, T. Tetrahedron 1968, 23, 2125.
- Schmidt, D.D.; Frommer, W.; Müller, L.; Truscheit, E. Naturwissenschaften 1979, 66, 584; Truscheit, E.; Frommer, W.; Junge, B.; Müller, L.; Schmidt, D.D.; Wingender, W. Angew. Chem. Int. Ed. Engl. 1981, 20, 744.
- 3. Kodama, Y.; Tsuruoka, T.; Niwa, T.; Inouye, Sh. J. Antibiot. (Tokyo) 1985, 38, 116.
- 4. Niwa, T.; Tsuruoka, T.; Goi, H.; Kodama, Y.; Itoh, J.; Inouye, Sh; Yamada, Y.; Niida, T.; Nobe, M.; Ogawa, Y. J. Antibiot. (Tokyo) **1984**, 37, 1579.
- 5. Legler, G.; Pohl, St. Carbohydr. Res., 1986, 155, 119.
- 6. Auberson, Y.; Vogel, P. Angew. Chem. Int. Ed. Engl. 1989, 28, 1498.
- Karpas, A.; Fleet, G.W.J.; Dwek, R.A.; Petursson, S.; Namgoong, S.K.; Ramsden, N.G.; Jacob, G.S.; Rademacher, T.W. Proc. Natl. Acad. Sci. USA 1988, 85, 9229.
- 8. Schaffer, R. The Carbohydrates Pigman, W.; Horton, D. Ed.; Academic Press : San Diego, 1972; Vol.1A, pp. 94-99.
- Defoin, A.; Fritz, H.; Geffroy, G.; Streith, J. Tetrahedron Lett. 1986, 27, 4227; Defoin, A.; Fritz, H.; Geffroy, G.; Streith, J. Helv. Chim. Acta, 1988, 71, 1642.
- 10. Paulsen, H. Tetrahedron Lett. 1964, 451; Paulsen, H. Liebigs Ann. Chem. 1965, 683, 187.
- 11. Angyal, S.J. Angew. Chem. Int. Ed. Engl. 1969, 8, 157.
- 12. Pinto, B.M.; Wolfe, S. Tetrahedron Lett. 1982, 23, 3687.

(Received in France 29 March 1993; accepted 7 May 1993)